In the Pennylane instance, a Max cut problem of 4 qubits was shown. Here, I want to try to study 5 qubits, but there is a problem in the output results. The results are still four qubit results, and I am trying to change【xtick_labels = list(map(lambda x: format(x, “04b”), xticks))】to【xtick_labels = list(map(lambda x: format(x, “05b”), xticks))】But it’s just adding a |0> before each bit, which is problematic. How should I modify it?
Best wishes!
# Put code here
import pennylane as qml
from pennylane import numpy as np
np.random.seed(42)
n_wires = 5
graph = [(0, 1), (0, 3), (0, 2), (0, 4)]
# unitary operator U_B with parameter beta
def U_B(beta):
for wire in range(n_wires):
qml.RX(2 * beta, wires=wire)
def U_C(gamma):
for edge in graph:
wire1 = edge[0]
wire2 = edge[1]
qml.CNOT(wires=[wire1, wire2])
qml.RZ(2 * gamma, wires=wire2)
qml.CNOT(wires=[wire1, wire2])
def bitstring_to_int(bit_string_sample):
bit_string = "".join(str(bs) for bs in bit_string_sample)
return int(bit_string, base=2)
dev = qml.device("lightning.qubit", wires=n_wires, shots=1)
@qml.qnode(dev)
def circuit(gammas, betas, edge=None, n_layers=1):
# apply Hadamards to get the n qubit |+> state
for wire in range(n_wires):
qml.Hadamard(wires=wire)
# p instances of unitary operators
for i in range(n_layers):
U_C(gammas[i])
U_B(betas[i])
if edge is None:
# measurement phase
return qml.sample()
# during the optimization phase we are evaluating a term
# in the objective using expval
H = qml.PauliZ(edge[0]) @ qml.PauliZ(edge[1])
return qml.expval(H)
def qaoa_maxcut(n_layers=1):
print("\np={:d}".format(n_layers))
# initialize the parameters near zero
init_params = 0.01 * np.random.rand(2, n_layers, requires_grad=True)
# minimize the negative of the objective function
def objective(params):
gammas = params[0]
betas = params[1]
neg_obj = 0
for edge in graph:
# objective for the MaxCut problem
neg_obj -= 0.5 * (1 - circuit(gammas, betas, edge=edge, n_layers=n_layers))
return neg_obj
# initialize optimizer: Adagrad works well empirically
opt = qml.AdagradOptimizer(stepsize=0.5)
# optimize parameters in objective
params = init_params
steps = 30
for i in range(steps):
params = opt.step(objective, params)
if (i + 1) % 5 == 0:
print("Objective after step {:5d}: {: .7f}".format(i + 1, -objective(params)))
# sample measured bitstrings 100 times
bit_strings = []
n_samples = 100
for i in range(0, n_samples):
bit_strings.append(bitstring_to_int(circuit(params[0], params[1], edge=None, n_layers=n_layers)))
# print optimal parameters and most frequently sampled bitstring
counts = np.bincount(np.array(bit_strings))
most_freq_bit_string = np.argmax(counts)
print("Optimized (gamma, beta) vectors:\n{}".format(params[:, :n_layers]))
print("Most frequently sampled bit string is: {:04b}".format(most_freq_bit_string))
return -objective(params), bit_strings
bitstrings1 = qaoa_maxcut(n_layers=1)[1]
bitstrings2 = qaoa_maxcut(n_layers=2)[1]
import matplotlib.pyplot as plt
xticks = range(0, 16)
xtick_labels = list(map(lambda x: format(x, "05b"), xticks))
bins = np.arange(0, 17) - 0.5
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.title("n_layers=1")
plt.xlabel("bitstrings")
plt.ylabel("freq.")
plt.xticks(xticks, xtick_labels, rotation="vertical")
plt.hist(bitstrings1, bins=bins)
plt.subplot(1, 2, 2)
plt.title("n_layers=2")
plt.xlabel("bitstrings")
plt.ylabel("freq.")
plt.xticks(xticks, xtick_labels, rotation="vertical")
plt.hist(bitstrings2, bins=bins)
plt.tight_layout()
plt.show()
# Put full error message here