OK,thank you for your reading.So why i create a circuit which has six qubit,but output a four qubit and only 0000 0010 have the result?How can i modify my code?
Best wishes!
#
import pennylane as qml
from pennylane import numpy as np
from matplotlib import pyplot as plt
np.random.seed(42)
n_wires = 6
G = 23.5
q = 3.0
# unitary operator U_B with parameter beta
def U_B(beta):
for wire in range(n_wires):
qml.RX(2 * beta, wires=wire)
# unitary operator U_C with parameter gamma
def U_C(gamma):
for wire in range(n_wires):
wire0 = 0
wire1 = 1
wire2 = 2
wire3 = 3
wire4 = 4
wire5 = 5
qml.CNOT(wires=[wire0, wire1])
qml.RZ(2 * G * gamma, wires=wire1)
qml.CNOT(wires=[wire0, wire1])
qml.CNOT(wires=[wire1, wire2])
qml.RZ(2 * G * gamma, wires=wire2)
qml.CNOT(wires=[wire1, wire2])
qml.CNOT(wires=[wire2, wire3])
qml.RZ(2 * G * gamma, wires=wire3)
qml.CNOT(wires=[wire2, wire3])
qml.CNOT(wires=[wire3, wire4])
qml.RZ(2 * G * gamma, wires=wire4)
qml.CNOT(wires=[wire3, wire4])
qml.CNOT(wires=[wire4, wire5])
qml.RZ(2 * G * gamma, wires=wire5)
qml.CNOT(wires=[wire4, wire5])
qml.Barrier()
qml.CNOT(wires=[wire0, wire2])
qml.RZ(2 * G * gamma, wires=wire2)
qml.CNOT(wires=[wire0, wire2])
qml.CNOT(wires=[wire1, wire3])
qml.RZ(2 * G * gamma, wires=wire3)
qml.CNOT(wires=[wire1, wire3])
qml.CNOT(wires=[wire2, wire4])
qml.RZ(2 * G * gamma, wires=wire4)
qml.CNOT(wires=[wire2, wire4])
qml.CNOT(wires=[wire3, wire5])
qml.RZ(2 * G * gamma, wires=wire5)
qml.CNOT(wires=[wire3, wire5])
qml.Barrier()
qml.CNOT(wires=[wire0, wire3])
qml.RZ(2 * G * gamma, wires=wire3)
qml.CNOT(wires=[wire0, wire3])
qml.CNOT(wires=[wire1, wire4])
qml.RZ(2 * G * gamma, wires=wire4)
qml.CNOT(wires=[wire1, wire4])
qml.CNOT(wires=[wire2, wire5])
qml.RZ(2 * G * gamma, wires=wire5)
qml.CNOT(wires=[wire2, wire5])
qml.Barrier()
qml.CNOT(wires=[wire0, wire4])
qml.RZ(2 * G * gamma, wires=wire4)
qml.CNOT(wires=[wire0, wire4])
qml.CNOT(wires=[wire1, wire5])
qml.RZ(2 * G * gamma, wires=wire5)
qml.CNOT(wires=[wire1, wire5])
qml.Barrier()
qml.CNOT(wires=[wire0, wire5])
qml.RZ(2 * G * gamma, wires=wire5)
qml.CNOT(wires=[wire0, wire5])
qml.Barrier()
qml.RZ(2 * q * gamma, wires=wire0)
qml.RZ(2 * q * gamma, wires=wire1)
qml.RZ(2 * q * gamma, wires=wire2)
qml.RZ(2 * q * gamma, wires=wire3)
qml.RZ(2 * q * gamma, wires=wire4)
qml.RZ(2 * q * gamma, wires=wire5)
qml.Barrier()
def bitstring_to_int(bit_string_sample):
bit_string = "".join(str(bs) for bs in bit_string_sample)
return int(bit_string, base=2)
dev = qml.device("lightning.qubit", wires=n_wires, shots=1)
wire0 = [0]
wire1 = [1]
@qml.qnode(dev)
def circuit(gammas, betas, n_layers=1):
# apply Hadamards to get the n qubit |+> state
for wire in range(n_wires):
qml.Hadamard(wires=wire)
# p instances of unitary operators
for i in range(n_layers):
U_C(gammas[i])
U_B(betas[i])
# during the optimization phase we are evaluating a term
# in the objective using expval
H = qml.PauliZ(wire0) @ qml.PauliZ(wire1) + qml.PauliZ(wire0)
return qml.expval(H)
def qaoa_1(n_layers=1):
print("\np={:d}".format(n_layers))
# initialize the parameters near zero
init_params = 0.01 * np.random.rand(2, n_layers)
# minimize the negative of the objective function
def objective(params):
gammas = params[0]
betas = params[1]
neg_obj = 0
neg_obj -= circuit(gammas, betas, n_layers=n_layers)
return neg_obj
# initialize optimizer: Adagrad works well empirically
opt = qml.AdagradOptimizer(stepsize=0.5)
# optimize parameters in objective
params = init_params
steps = 30
for i in range(steps):
params = opt.step(objective, params)
if (i + 1) % 5 == 0:
print("Objective after step {:5d}: {: .7f}".format(i + 1, -objective(params)))
# sample measured bitstrings 100 times
bit_strings = []
n_samples = 100
for i in range(n_samples):
bit_strings.append(abs(int(circuit(params[0], params[1], n_layers=n_layers))))
bit_strings_np = np.array(bit_strings)
bit_strings_np = np.abs(bit_strings_np)
counts = np.bincount(bit_strings_np)
# print optimal parameters and most frequently sampled bitstring
most_freq_bit_string = np.argmax(counts)
print("Optimized (gamma, beta) vectors:\n{}".format(params[:, :n_layers]))
print("Most frequently sampled bit string is: {:04b}".format(most_freq_bit_string))
return -objective(params), bit_strings
# perform qaoa on our graph with p=1,2 and
# keep the bitstring sample lists
bitstrings1 = qaoa_1(n_layers=1)[1]
bitstrings2 = qaoa_1(n_layers=2)[1]
import matplotlib.pyplot as plt
xticks = range(0, 16)
xtick_labels = list(map(lambda x: format(x, "04b"), xticks))
bins = np.arange(0, 17) - 0.5
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.title("n_layers=1")
plt.xlabel("bitstrings")
plt.ylabel("freq.")
plt.xticks(xticks, xtick_labels, rotation="vertical")
plt.hist(bitstrings1, bins=bins)
plt.subplot(1, 2, 2)
plt.title("n_layers=2")
plt.xlabel("bitstrings")
plt.ylabel("freq.")
plt.xticks(xticks, xtick_labels, rotation="vertical")
plt.hist(bitstrings2, bins=bins)
plt.tight_layout()
plt.show()
# Put full error message here
p=1
Objective after step 5: 2.0000000
Objective after step 10: -2.0000000
Objective after step 15: -0.0000000
Objective after step 20: -0.0000000
Objective after step 25: -0.0000000
Objective after step 30: -0.0000000
Optimized (gamma, beta) vectors:
[[0.0037454 ]
[0.00950714]]
Most frequently sampled bit string is: 0000
p=2
Objective after step 5: 2.0000000
Objective after step 10: -2.0000000
Objective after step 15: -0.0000000
Objective after step 20: -2.0000000
Objective after step 25: -0.0000000
Objective after step 30: -2.0000000
Optimized (gamma, beta) vectors:
[[0.00798295 0.00649964]
[0.00701967 0.00795793]]
Most frequently sampled bit string is: 0000
Name: PennyLane
Version: 0.33.1
Summary: PennyLane is a Python quantum machine learning library by Xanadu Inc.
Home-page: https://github.com/PennyLaneAI/pennylane
Author:
Author-email:
License: Apache License 2.0
Location: d:\download\Anaconda\envs\xming\Lib\site-packages
Requires: appdirs, autograd, autoray, cachetools, networkx, numpy, pennylane-lightning, requests, rustworkx, scipy, semantic-version, toml, typing-extensions
Required-by: PennyLane-Lightning, pennylane-qulacs
Platform info: Windows-11-10.0.22621-SP0
Python version: 3.12.0
Numpy version: 1.26.1
Scipy version: 1.11.3
Installed devices:
- default.gaussian (PennyLane-0.33.1)
- default.mixed (PennyLane-0.33.1)
- default.qubit (PennyLane-0.33.1)
- default.qubit.autograd (PennyLane-0.33.1)
- default.qubit.jax (PennyLane-0.33.1)
- default.qubit.legacy (PennyLane-0.33.1)
- default.qubit.tf (PennyLane-0.33.1)
- default.qubit.torch (PennyLane-0.33.1)
- default.qutrit (PennyLane-0.33.1)
- null.qubit (PennyLane-0.33.1)
- lightning.qubit (PennyLane-Lightning-0.33.1)
- qulacs.simulator (pennylane-qulacs-0.32.0)