Hi all,
I am working on a quantum machine learning project written in Pytorch and Pennylane, but I would like to try to use Pennylane-Catalyst to speed up the training process.
My specs are as follows:
Name: PennyLane
Version: 0.35.0
Summary: PennyLane is a cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Train a quantum computer the same way as a neural network.
Home-page: https://github.com/PennyLaneAI/pennylane
Author:
Author-email:
License: Apache License 2.0
Location: /usr/local/lib/python3.11/dist-packages
Requires: appdirs, autograd, autoray, cachetools, networkx, numpy, pennylane-lightning, requests, rustworkx, scipy, semantic-version, toml, typing-extensions
Required-by: pennylane-qulacs, PennyLane_Lightning, PennyLane_Lightning_GPU
Platform info: Linux-6.5.0-25-generic-x86_64-with-glibc2.35
Python version: 3.11.0
Numpy version: 1.26.3
Scipy version: 1.12.0
Installed devices:
- lightning.qubit (PennyLane_Lightning-0.35.1)
- qulacs.simulator (pennylane-qulacs-0.32.0)
- default.clifford (PennyLane-0.35.0)
- default.gaussian (PennyLane-0.35.0)
- default.mixed (PennyLane-0.35.0)
- default.qubit (PennyLane-0.35.0)
- default.qubit.autograd (PennyLane-0.35.0)
- default.qubit.jax (PennyLane-0.35.0)
- default.qubit.legacy (PennyLane-0.35.0)
- default.qubit.tf (PennyLane-0.35.0)
- default.qubit.torch (PennyLane-0.35.0)
- default.qutrit (PennyLane-0.35.0)
- null.qubit (PennyLane-0.35.0)
- lightning.gpu (PennyLane_Lightning_GPU-0.35.1)
I understand that Catalyst normally only supports Jax, but I’m wondering if there is a special technique that I might be able to use to integrate Catalyst with PyTorch without having to overhaul my code. Thank you very much for your help.