Hi PennyLane Help Team,
I am currently working on a quantum optimization problem and I would like to implement the COBYLA optimizer in my PennyLane code. I have some experience with other optimizers in PennyLane but am unsure about the specific setup and parameters for COBYLA.
Could you please guide me on how to set up and use the COBYLA optimizer in my code?
import pennylane as qml
from pennylane import numpy as np
import matplotlib.pyplot as plt
# Define constants for the Hamiltonian
alpha = 0.4
beta = 0.2
# Define the Hamiltonian for H2
H = alpha * (qml.PauliZ(0) @ qml.Identity(1) + qml.Identity(0) @ qml.PauliZ(1)) + beta * qml.PauliX(0) @ qml.PauliX(1)
# Set up the device (1 qubit in this case)
dev = qml.device('lightning.qubit', wires=2)
# Define the quantum circuit ansatz directly as a QNode
@qml.qnode(dev, interface="autograd", diff_method="best")
# Define the ansatz for the H2 molecule
def ansatz(params):
# Apply initial rotations
qml.RY(2 * params[0], wires=0)
qml.RY(2 * params[1], wires=1)
# Apply entangling gate (CNOT)
qml.CNOT(wires=[0, 1])
# Apply final rotations
qml.RY(2 * params[2], wires=0)
qml.RY(2 * params[3], wires=1)
return qml.expval(H)# Measure the expectation value of the Hamiltonian
#define ansatz as cost
cost = ansatz
# Initial parameters
np.random.seed(42)
theta_initial = np.array([-0.1, 0.2, 1.1, 2.0], requires_grad=True)
eta = 0.05 # Learning rate
steps = 50 # Number of iterations