import strawberryfields as sf
from strawberryfields import ops
dev=qml.device(“strawberryfields.tf”, wires=4, cutoff_dim=4)
it throws an error of contextual version conflict.
I tried “strawberryfields.fock” as device, but still did not work.
I updated numpy version also. But still it throws a same error.
Hey @Amandeep,
Sounds like you just need to update numpy to something more than 1.19.2, which you can do via pip install numpy==1.23.5
, for example. Does that solve the issue?
@isaacdevlugt
Thank you for your response.
I already did that. But still the error remains same.
Can you provide your full code that reproduces the error along with strawberryfields.about()
?
after importing the libraries. I am just declaring the qml.device at the beginning.
from pennylane import numpy as np
import pennylane as qml
import tensorflow as tf
import strawberryfields as sf
from strawberryfields import ops
dev=qml.device(“strawberryfields.tf”, wires=4, cutoff_dim=4)
Hmm, I can’t replicate your error. Here is the output of sf.about()
and qml.about()
for me:
Strawberry Fields: a Python library for continuous-variable quantum circuits.
Copyright 2018-2020 Xanadu Quantum Technologies Inc.
Python version: 3.9.14
Platform info: macOS-13.3.1-x86_64-i386-64bit
Installation path: /Users/isaac/pennylane-sf-plugin/lib/python3.9/site-packages/strawberryfields
Strawberry Fields version: 0.23.0
Numpy version: 1.23.5
Scipy version: 1.10.1
SymPy version: 1.12
NetworkX version: 3.1
The Walrus version: 0.20.0
Blackbird version: 0.5.0
XCC version: 0.3.0
TensorFlow version: 2.12.0
Name: PennyLane
Version: 0.29.1
Summary: PennyLane is a Python quantum machine learning library by Xanadu Inc.
Home-page: https://github.com/XanaduAI/pennylane
Author:
Author-email:
License: Apache License 2.0
Location: /Users/isaac/pennylane-sf-plugin/lib/python3.9/site-packages
Requires: appdirs, autograd, autoray, cachetools, networkx, numpy, pennylane-lightning, requests, retworkx, scipy, semantic-version, toml
Required-by: PennyLane-Lightning, PennyLane-SF
Platform info: macOS-13.3.1-x86_64-i386-64bit
Python version: 3.9.14
Numpy version: 1.23.5
Scipy version: 1.10.1
Installed devices:
- default.gaussian (PennyLane-0.29.1)
- default.mixed (PennyLane-0.29.1)
- default.qubit (PennyLane-0.29.1)
- default.qubit.autograd (PennyLane-0.29.1)
- default.qubit.jax (PennyLane-0.29.1)
- default.qubit.tf (PennyLane-0.29.1)
- default.qubit.torch (PennyLane-0.29.1)
- default.qutrit (PennyLane-0.29.1)
- null.qubit (PennyLane-0.29.1)
- strawberryfields.fock (PennyLane-SF-0.29.1)
- strawberryfields.gaussian (PennyLane-SF-0.29.1)
- strawberryfields.gbs (PennyLane-SF-0.29.1)
- strawberryfields.remote (PennyLane-SF-0.29.1)
- strawberryfields.tf (PennyLane-SF-0.29.1)
- lightning.qubit (PennyLane-Lightning-0.30.0)
Note that the PL-SF is only supported up to v0.29.1 of PennyLane 
@isaacdevlugt
I did that.
Strawberry Fields: a Python library for continuous-variable quantum circuits.
Copyright 2018-2020 Xanadu Quantum Technologies Inc.
Python version: 3.8.16
Platform info: Linux-3.10.0-1160.62.1.el7.x86_64-x86_64-with-glibc2.17
Installation path: /home/bhatia87/.conda/envs/cent7/2020.11-py38/abcd/lib/python3.8/site-packages/strawberryfields
Strawberry Fields version: 0.23.0
Numpy version: 1.23.5
Scipy version: 1.10.1
SymPy version: 1.8
NetworkX version: 2.8.4
The Walrus version: 0.20.0
Blackbird version: 0.5.0
XCC version: 0.3.0
Name: PennyLane
Version: 0.28.0
Summary: PennyLane is a Python quantum machine learning library by Xanadu Inc.
Home-page: GitHub - PennyLaneAI/pennylane: PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network.
Author:
Author-email:
License: Apache License 2.0
Location: /home/bhatia87/.local/lib/python3.8/site-packages
Requires: appdirs, autograd, autoray, cachetools, networkx, numpy, pennylane-lightning, requests, retworkx, scipy, semantic-version, toml
Required-by: PennyLane-Lightning, PennyLane-qiskit, PennyLane-SF, pennylearn
Platform info: Linux-3.10.0-1160.62.1.el7.x86_64-x86_64-with-glibc2.17
Python version: 3.8.16
Numpy version: 1.23.5
Scipy version: 1.10.1
Installed devices:
- default.gaussian (PennyLane-0.28.0)
- default.mixed (PennyLane-0.28.0)
- default.qubit (PennyLane-0.28.0)
- default.qubit.autograd (PennyLane-0.28.0)
- default.qubit.jax (PennyLane-0.28.0)
- default.qubit.tf (PennyLane-0.28.0)
- default.qubit.torch (PennyLane-0.28.0)
- default.qutrit (PennyLane-0.28.0)
- null.qubit (PennyLane-0.28.0)
- lightning.qubit (PennyLane-Lightning-0.29.0)
- strawberryfields.fock (PennyLane-SF-0.29.1)
- strawberryfields.gaussian (PennyLane-SF-0.29.1)
- strawberryfields.gbs (PennyLane-SF-0.29.1)
- strawberryfields.remote (PennyLane-SF-0.29.1)
- strawberryfields.tf (PennyLane-SF-0.29.1)
- qiskit.aer (PennyLane-qiskit-0.29.0)
- qiskit.basicaer (PennyLane-qiskit-0.29.0)
- qiskit.ibmq (PennyLane-qiskit-0.29.0)
- qiskit.ibmq.circuit_runner (PennyLane-qiskit-0.29.0)
- qiskit.ibmq.sampler (PennyLane-qiskit-0.29.0)
I tried creating a virtual environment with those exact specs and I can’t replicate your version issue
. Maybe a safe bet to delete this virtual environment and then python -m pip install pennylane pennylane-sf strawberryfields
. Let me know if that works! Sometimes virtual environments get messy and need deleting.