Dear josh-san,
Thanks for the advice.
tf.split
worked well.
Great.
dev = qml.device("lightning.qubit", wires=n_qubits)
@qml.qnode(dev, diff_method='adjoint', immutable=False)
def qnode(inputs, weights):
weights_each_layer = tf.split(weights, num_or_size_splits=layers, axis=0)
for i in range(layers):
qml.templates.AngleEmbedding(inputs, wires=range(n_qubits))
qml.templates.StronglyEntanglingLayers(weights_each_layer[i], wires=range(n_qubits))
return qml.expval(qml.PauliZ(0))
weight_shapes = {"weights": (layers, n_qubits,3)}
Epoch 1/3
4/4 [==============================] - 1s 271ms/step - loss: 0.9884 - val_loss: 1.0154
Epoch 2/3
4/4 [==============================] - 1s 264ms/step - loss: 0.6703 - val_loss: 0.6914
Epoch 3/3
4/4 [==============================] - 1s 262ms/step - loss: 0.3764 - val_loss: 0.3741